ProtoDUNE commissioning: Beginning the noise campaign

ProtoDUNE DRA

David Adams

BNL

September 19, 2018

Introduction

The protoDUNE detector is being commissioned

- Filled with Lar
- HV run up past 170 kV
 - Goal is 180 kV (500 V/cm)
 - Voltage instabilities being addressed
- Data taken sporadically as detector cools
 - O List of runs I have studied is at https://wiki.dunescience.org/wiki/ProtoDUNE commissioning runs (dla)
 - Please let me know if I have missed anything interesting
- Tracks evident and plentiful with field on
 - See following displays
 - o LAr is still dirty and so we only expect to see tracks very close to anode
 - By (my) eye, electron "lifetime" is 10 20 cm
- Noisy channels
 - Dominant feature of event displays
 - Presumably dominate the ROIs (recob::Wire) output by dataprep
 - Complicate studies of noise in quieter channels

Detector displays

Standard detector display

- Following page has standard detector display
 - Actual detector sensitive volume is shown
 - For run at 170 kV: tracks (and noise) are evident
 - Y-axis is channel number—beam runs bottom to top
 - X-axis is the drift coordinate
 - Reversed so right side is beam right
 - Threshold to display a channel-tick is 20 ADC counts (5X noise level)
 - Note that graph rather than histo is displayed so nothing is hidden
- Drift coordinate requires conversion from ticks
 - I.e. we need tick0 (tick to place at the anode) and drift speed
 - Here t0 = 0 and speed is 0.08 cm/tick (1.6 mm/ μ s)
 - Center of plot is populated by both right and left APAs
 - Because we read out more than on drift length
 - Maybe later suppress ticks beyond the cathode plane
 - We can set tick0 to put one track at the right position
 - Soon switch to 500 to correspond to trigger
 - Now trigger is random or anyways we don't expect to see the beam tracks

Raw ADC collection view. Run 4369, event 85.

Detector displays (2)

Expanded detector display

- To study noise, we would like to
 - See all channels and ticks including the cryostat-side planes
 - Avoid overlap between left and right APAs
- Following pages show examples of "expanded display"
 - TickO fixed to zero so data starts at APA plane
 - Drift speed reduced to 0.06 mm/tick so data collected on the TPC side just fits in the TPC volume
 - BTW this is the right value for 200 V/cm (72 kV)
 - X-axis expanded beyond cryostat to show cryostat-side data
 - First plot is same event as for the standard display

Raw ADC collection view. Run 4369, event 85.

Raw ADC collection view. Run 4369, event 87.

Raw ADC collection view. Run 4369, event 93.

Raw ADC collection view. Run 4369, event 106.

Noise campaign

Preceding plots show all the collection channels

- A few hundred (of the 6k) have issues at the 5*noise level
- We would like identify these (channel, FEMB, ...)
- And then flag as bad or mitigate noise
- And then do the same for the 9600 induction channels.
 - Similar plots are available

Identifying noisy channels

AdcChannelMetric tool has metrics for seeing noise

- Last week showed
 - Pedestal noise: Sigma of Gaussian fit to pedestal after removing one sticky code
 - Pedestal bin excess: Fraction of samples above fit in the sticky code bin
- Now add two more metrics
 - Raw RMS: RMS of raw ADC minus pedestal
 - Raw tail: Fraction of samples more than 3*noise away from the pedestal
- Examples of all of these follow
- New metric are more sensitive to the noise
 - Pedestal bin fraction may be large when sticky code is very close to the true value

Pedestal noise

Pedestal bin excess

Raw RMS

Raw tail

Waveforms

Once bad channels are identified...

- Waveforms help us decide what the problem is
 - and what action to take
- Example waveforms from the troublesome FEMB 302 follow

Action

Deal with noisy channels

- Create bad channel list and skip those in processing
- Create list of sticky ADC channel/codes
 - o Add tool to mitigate these with interpolation